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Approximation Results for Orthogonal Polynomials 
in Sobolev Spaces 

By C. Canuto and A. Quarteroni 

Abstract. We analyze the approximation properties of some interpolation operators and 
some L2-orthogonal projection operators related to systems of polynomials which are 
orthonormal with respect to a weight function o(x1, . . ., Xd), d > 1. The error estimates for 
the Legendre system and the Chebyshev system of the first kind are given in the norms of 
the Sobolev spaces H'. These results are useful in the numerical analysis of the approxima- 
tion of partial differential equations by spectral methods. 

0. Introduction. Spectral methods are a classical and largely used technique to 
solve differential equations, both theoretically and numerically. During the years 
they have gained new popularity in automatic computations for a wide class of 
physical problems (for instance in the fields of fluid and gas dynamics), due to the 
use of the Fast Fourier Transform algorithm. 

These methods appear to be competitive with finite difference and finite element 
methods and they must be decisively preferred to the last ones whenever the 
solution is highly regular and the geometric dimension of the domain becomes 
large. Moreover, by these methods it is possible to control easily the solution 
(filtering) of those numerical problems affected by oscillation and instability 
phenomena. 

The use of spectral and pseudo-spectral methods in computations in many fields 
of engineering has been matched by deeper theoretical studies; let us recall here the 
pioneering works by Orszag [25], [26], Kreiss and Oliger [14] and the monograph by 
Gottlieb and Orszag [13]. The theoretical results of such works are mainly con- 
cerned with the study of the stability of approximation of parabolic and hyperbolic 
equations; the solution is assumed to be infinitely differentiable, so that by an 
analysis of the Fourier coefficients an infinite order of convergence can be 
achieved. More recently (see Pasciak [27], Canuto and Quarteroni [10], [11], Maday 
and Quarteroni [20], [211, [22], Mercier [23]), the spectral methods have been 
studied by the variational techniques typical of functional analysis, to point out the 
dependence of the approximation error (for instance in the L2-norm, or in the 
energy norm) on the regularity of the solution of continuous problems and on the 
discretization parameter (the dimension of the space in which the approximate 
solution is sought). Indeed, often the solution is not infinitely differentiable; on the 
other hand, sometimes even if the solution is smooth, its derivatives may have very 
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large norms which affect negatively the rate of convergence (for instance in 
problems with boundary layers). 

Both spectral and pseudo-spectral methods are essentially Ritz-Galerkin methods 
(combined with some integration formulae in the pseudo-spectral case). It is well 
known that when Galerkin methods are used the distance between the exact and 
the discrete solution (approximation error) is bounded by the distance between the 

exact solution and its orthogonal projection upon the subspace (projection error), or 
by the distance between the exact solution and its interpolated polynomial at some 
suitable points (interpolation error). This upper bound is often realistic, in the sense 
that the asymptotic behavior of the approximation error is not better than the one 
of the projection (or even the interpolation) error. Even more, in some cases the 
approximate solution coincides with the projection of the true solution upon the 
subspace (for instance when linear problems with constant coefficients are ap- 
proximated by spectral methods). This motivates the interest in evaluating the 
projection and the interpolation errors in differently weighted Sobolev norms. So 
we must face a situation different from the one of the classical approximation 
theory where the properties of approximation of orthogonal function systems, 
polynomial and trigonometric, are studied in the LP-norms, and mostly in the 
maximum norm (see, e.g., Butzer and Berens [6], Butzer and Nessel [7], Nikol'skiT 
[24], Sansone [291, Szego [30], Triebel [31], Zygmund [32]; see also Bube [5]). 
Approximation results in Sobolev norms for the trigonometric system have been 
obtained by Kreiss and Oliger [15]. In this paper we consider the systems of 
Legendre orthogonal polynomials, and of Chebyshev orthogonal polynomials of 
the first kind in dimension d > 1. The reason for this interest must be sought in the 
applications to spectral approximations of boundary value problems. Indeed, if the 
boundary conditions are not periodic, Legendre approximation seems to be the 
easiest to be investigated (the weight w is equal to 1). On the other hand, the 
Chebyshev approximation is the most effective for practical computations since it 
allows the use of the Fast Fourier Transform algorithm. 

The techniques used to obtain our results are based on the representation of a 
function in the terms of a series of orthogonal polynomials, on the use of the 
so-called inverse inequality, and finally on the operator interpolation theory in 
Banach spaces. For the theory of interpolation we refer for instance to Calderon 
[8], Lions [17], Lions and Peetre [19], Peetre [28]; a recent survey is given, e.g., by 
Bergh and Lofstrom [4]. 

An outline of the paper is as follows. In Section 1 some approximation results for 
the trigonometric system are recalled; the presentation of the results to the 
interpolation is made in the spirit of what will be its application to Chebyshev 
polynomials. 

In Section 2 we consider the La-projection operator upon the space of polynomi- 
als of degree at most N in any variable (w denotes the Chebyshev or Legendre 
weight). In Section 3 a general interpolation operator, built up starting by integra- 
tion formulas which are not necessarily the same in different spatial dimensions, is 
considered, and its approximation properties are studied. 

In [22] Maday and Quarteroni use the results of Section 2 to study the 
approximation properties of some projection operators in higher order Sobolev 
norms. Recently, an interesting method which lies inbetween finite elements and 
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spectral methods has been investigated from the theoretical point of view by 
Babuska, Szabo and Katz [3]. In particular they obtain approximation properties of 
polynomials in the norms of the usual Sobolev spaces. 

Acknowledgements. Some of the results of this paper were announced in [9]; we 
thank Professor J. L. Lions for the presentation to the C. R. Acad. Sci. of Paris. We 
also wish to express our gratitude to Professors F. Brezzi and P. A. Raviart for 
helpful suggestions and continuous encouragement. 

Notations. Throughout this paper we shall use the following notations: I will be 
an open bounded interval c R, whose variable is denoted by x; Q the product 
Id C Rd (d integer > 1) whose variable is denoted by x = (x(.')I_ d; for a 
multi-integer k E Zd, we set ikV = jd X I'12 and IkloK = m x<jd Ikjl. When 
d = 1 we set D = d/dx, when d > 1, Dj = a/ax@). The symbol X'J=p (q eventu- 
ally + oo) will denote the summation over all integral k such that p < k < q and 
k - p is even. 

We use weighted Sobolev spaces of Hilbert type over the open set Q: we recall 
here some definitions (see, e.g., Adams [1], Avantaggiati [2], Kufner, John and 
Fucik [16], Lions and Magenes [18]). We are given a weight function w on Q 
satisfying w E L'((Q), w(x) > 0 in U. Set 

L2(Q) = ({: Q -- C I 0 is measurable and ( <K +<} 

equipped with the inner product 

(+, ) = f +(x) 4A(x) w(x) dx. 

For any integral s > 0, set 

Hs ( () = C E L(Q) I 1111ksI, < +?}, 

where 

/d 2 

11I412I= kENd f DI L/)4 D w dx. 

k,+k2+ * +kd<S 

For real s > 0, define H,(Q) by complex interpolation between HW(Q) and H (Q), 
where s denotes the largest integer smaller than s (see, e.g., Bergh and Lofstrom 

[4]). 
Finally, L2(Q) and Hs(Q) will denote the subspaces of L,2(Q) and Hji,(Q) of 

real-valued functions; if w 1, the subscript w will be systematically dropped. 

1. The Fourier System. In this section only, we assume I = I = (- r), ' and we 
set Q= d; its variables will be denoted by 0, 0 instead of x, x. We consider the set 

{iklk 
Z 
Zd}, with 4'k(O) = (2r) -d/2 exp(ik * 0), which forms a complete orthonor- 

mal system in L2(Q). Given C(p'(Q) = {v = V1ICI V: Rd __ C is infinitely differentia- 
ble and 27r-periodic in each variable), we define for any s > 0 HKpP)(i) = closure of 
C(p)(Qz2) in Hs(Q). Since Dj1ik = ikjbik, for any u = EkeZd Uk4ik the norm Illullls 
(Iu12 + Iu12)'/2, where I1u2 = Ekezd lklaI1ukl2, is equivalent to the Hs(Q)-norm lulls 
(see, e.g., Pasciak [27]). For any positive integer N, set 

SN = span{4/kl IkloK < N) C L2(c), 
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and denote by PN: L2(Q2) -k SN the orthogonal projection operator. Note that PN 
commutes with derivation, i.e., PND1 = D1PN, I < j < d. 

THEOREM 1. 1. For any real 0 < tu < a, there exists a constant C such that 

( 1. 1 ) II u - PNUII 6 CN Ju V u E Tp)(Q). 

Proof. One has 

IIIu 
- PNUIII|4 = 2 (I + IkI2M)IukI2 < 2 E 

IkI2(0G)Iz k2 
|kloo >Nv 1ik1 >N 

< 2N2(-,a)IU 12 E 

Moreover, the following inverse inequality can be easily checked: 

PROPOSITION 1.1. For any real 0 < v < ,u, 

(1.2) 14{L A N'-'I4I,0P Ve SN, 

and hence 

(1.3) 11411A < CN V'IoI4I V4 E SN. O 

We now construct some trigonometric interpolation operators over Q. The set of 
interpolation points will be the cartesian product of d (possibly different) sets of 
interpolation points over I. So, we start by introducing three different interpolation 
operators in one dimension. The corresponding interpolation points are equispaced 
over I, so they will give rise to the Chebyshev points over [-1, 1] (see Section 3.1). 
We call them of type (G), (GR) or (GL), since they are associated with the 
integration formulae of Gauss, Gauss-Radau or Gauss-Lobatto, respectively, with 
respect to the Chebyshev weight. This material will be used in Section 3. 

We consider interpolation points of the form 

(1.4) Om =0 + mh E:I, m =0, . . ., M, h = 2rr/(M + 1) 

for given 00 E Iand M E N. We associate to them a bilinear form on C0([ - 7T, sJ) 
M 

(1.5) (U, V)N = h 2 u(0m) v(0m) 
m-0 

and an interpolation operator at the points Om m = 0, ... , M, 

(1.6) ILc: C ([-T, -T*) N 

over a space of dimension M + 1 spanned by given trigonometric polynomials. 
The following identities will be used: 

1 M+I m) I if p E=(M +1)Z, (1.7) A,{ + exp(ihpm) = oerwiSe 
M+l m=0 P thrwse 

(a) Interpolation Points of Type (G). We choose 

_2N + 1 
(1.8) 00-=-2N+2 r and M=2N+ 1. 

By (1.7) we get 

19) (PI' %kN 
= ol ei 

if I 
e 

k = 2q(N + 1), q ( Z 

O otherwise. 
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Hence if N = 5(G) = e e SN+1(I) | )-(N+I) = 0, one has 
N+I1 + 

( 1.10) f'cv = E1 v,J with Vk = (v, Pk)N = ( 1)k +2q(N+ 1)- 
k=-N q oo 

(b) Interpolation Points of Type (GR). We choose 

(1.11) 90=-T and M=2N. 

By (1.7) we get 

(1.12) (41' %4k)N = l(-) if -k = (2N + 1)q, q e Z, 
O otherwise. 

hence if N =NR) , one has 
N oo 

(1.13) iv k = 2 vk with Vk = (v, 'k)N = 
l 

( y 1) tk+( . 
k=-N q=- 

(c) Interpolation Points of Type (GL). We choose 

(1.14) 00= -7T and M= 2N-1. 

By (1.7) we get 

(1.15) ( )N {(0 otherwise 
Note that 

(1.16) (v, 4'N)N = (V, 1-N)N VV e C '(T, 

Hence if N =IN = { SN.PN =L-N) 

N oo 
(1.17) HcV= k t3k4 with ik = (v,I k)N = - Vk+2qN 

k--N q -oo 

where the asterisk means that 13 and 13-N must be multiplied by 1/2. 
We now consider the general dimension d. We divide the set GD = { 1, . .. ,d) 

into three disjoint (eventually void) sets J(G), J(GR), J(GL); then we put 

2N + 2 if j E J(G), 
(1.18) v = (vj) e Nd, I j 2N + 1 if] E J(GR), 

2N if] eJ(GL), 
and we define the sets 

((N)= {mENd|m1 - 1,VjE G N, 

kEZ N { N+I ifj J(G), ~(N) k= -N <kj < 
N ifIe GJ(GR) uJ(GL), 

and the interpolation points 

Om = (9O)), m e ((N), where 9(4) = 6,, 
(1.19) defined in (a), (b) or (c) according asj E J(G), 

j e J(GR) orj E J(GL). 
We can now define the following bilinear form on C?(Q) 

(1.20) (u, V)N = 
CN E U(Om) V(Om) 

mEt(N) 

with CN = (h(G))card J(G) X (h(GR))card J(GR) X (h(GL))card J(GL). 
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Finally we set 

-N (Q) = k = E 1k4'k I ,= whenever k and I differ at 
k e t(N) 

(1.21) most in the sign of the components kj, lj with 

i E J(GL) and lkjl = 1l1 = N) 

(so that -N(Q) 11jEJ(G) -N Jb eJ(GR) SN X "JEJ(GL) 4N ), and we define the 

interpolation operator YI,: CO(Q) -* (i) by the relation 

(1.22) (fIcv, O)N = (V, 4)N, V4 EN- 

We agree that 
E*,_D(N) 

ak means that in summing every term ak must be 
multiplied by ! raised to the number of components kj in k with j E J(GL) and 2 

lkjl = N. Then, if 1I v = 1E6(N) Vk4/k one obtains, recalling (1.16), 
(1.23) v3k = (vI %Pk)N Vk E D(N). 

flcv is equal to v at the nodes (1.19) since, by (1.2) and (1.7), one has 

I-CV(Om) = * [CN E V(OD)dk(&On) 14dk(Om) 
kE t(N) [n Et) 

V v(on) [ CN 4 41k( On)4lck(Om)1 
n?Et(N) k CE (N) 

1: V(On)6n,m, 
? C t(N) 

THEOREM 1.2. For any real 0 < t ?< a with a > d/2, there exists a constant C 
such that 

(1.24) u- I7IullII < CN-JIulJ, Vu E Ha 

Proof. The theorem can be proved following the technique used by Pasciak in 
[27, Proof of Theorem 3], where only points of type (GL) are considered. [] 

2. Spectral Projection Systems. We consider a weight function w E L'(I), w > 0 
in I, and for any d > 1 we define 

d 

(2.1) co(x) = II w(x(')). 
j=1 

If {ok)}k is the system of the orthogonal polynomials in L2(I)-with deg pk = k 
-(see e.g. Szego [30]), then the system 

d 

(2.2) {<k}kENd, where xk(x) = 1 Ok(X0)), 
j=I 

is orthonormal and complete in 
L,2); 

any v e L2) can be written as 

(2.3) v = v vkqk, vk = (v, +kk), 
k ENd 

with 

(2.4) 0= V kj. 
k ENd 
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Setting 

(2.5) SN = SN(Q) = span{ kk I k E Nd, IkJ,, < N) 

(SN is the set of all polynomials of degree < N in each variable), we denote by PN: 

L2(Q) __SN the orthogonal projection on SN in L2(). 
Definition 2.1. The triplet (Q, co, PN) is called a Spectral Projection System (SPS). 
2.1. The Chebyshev SPS. We choose I = (-1, 1) and w(x) = (1 - x2)-2. If 1k 

denotes the Chebyshev polynomial of the first kind of degree k, Tk(cos 0) = 

cos kO, {ok = TkTk}k o0 (with To = 7T-1/2, Tk = (2/7T)'/2 for k > 1) is the orthonor- 
mal system associated with the weight w. 

We associate to every function v = v(x) on Q the function 

(2.6) iv(o) = v(cos 0), where cos 0 = (cos 0('), cos 9(2),... , COS @(d)) 

as an even, periodic function on Q2. Since fI v(x)w(x) dx = 2dja iv(O) dO and 
dO/dx = w > 1, it is easily checked that 

(2.7) the mapping v v-* i is a continuous injection of HS(Q) into H(P)(Q). 

Clearly it also maps SN into SN: more precisely for any k E Nd, , e 

span{i, I I E Ze and llj = kj, 1 < j < d}. In particular, this implies that 

(2.8) PNV PNV Vv E 

We can now derive the rates of convergence (with respect to N) for the 
approximation error u - PNU in the Sobolev norms. The estimate in the L2-norm 
is an easy consequence of Proposition 1.1. 

THEOREM 2.1. For any real a > 0, there exists a constant C such that 

(2.9) IIu - PNuIIO,,, < CN uIIuIIO, Vu E H,,,(Q). 

Proof. One has 

IU - PNUIIO . = 2 d/2 11 PNUIIL2(Q) by (2.8), 

<2- d/2 - by ( 1.1), 

< CN-aIIuJ0,',U by (2.7). C1 

We now consider the Sobolev norms of higher order. To this end, let us recall 
that the following formal expansion of the derivative of a function v = X 0.0 ' kkk 

holds: 

(2.10) Dv= (yl 2 kik) 
1, y0=V2,y,= 1,for/ > 1. 

1=0 kC1+ 1 

This expansion can be rigorously justified whenever v is regular enough; for 
instance if I 3kI = O(k-3) for k -x o, the right-hand side of (2.10) defines a 
LP(I)-function which is the distributional derivative of v (see the proof of Lemma 
2.2 below). The following inverse inequality will be used. 

LEMmA 2.1. For any real , and v such that 0 < v p , there exists a constant C 
such that 

(2.11) I'u,II", < CN2(p- )IIUII", VU E SN. 
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Proof. For v = > JkJ N vk+k one has by (2.10) 

N 

DI v = , Yl, Et' klv(k,' 01, 
I11. <N k,-l,+1 

where I' = (12,.. , ld). Hence 

N 2 

{{llOz, = E Yl1t E lV(k I, ,,) IIIOO <N k, =l,+1 
l, <N 

N-1 N N2 
< 2 E E E kl2 . v(kll')l2 

11 =0 11'1.o<Nf kj =11+1 kj =11+ l 

N(N + 1)(2N + 3) N E N 12 

11=0 k,=I 11 l00I<I N 

< CN jvjjo'W 

and similarly for the other first-order derivatives of v. A repeated application of 
these estimates yields 

(2.12) IIUIIm,#W c CN2m | uJO,W Vu E SN, 

for any integral m. For real ji we use interpolation of spaces: let SN() denote the 
space SN equipped with the H,,-norm, then the identity i: SN?O) - SNm) has norm 
( CN2m, while obviously i: SN() -, SN(?) has norm = 1. By Bergh and L6fstrom [4], 
Theorems 4.1.2 and 4.2.1(c), we get that i: SNO) -3 (SNm), SN(0)[),, = sN(7m) has norm 
( CN 2em, 0 < 9 < 1. Finally, for nonzero v, we interpolate between i: SNkO) - SNIL) 
and i: SN) - SNk') and again use Theorem 4.1.2 quoted above. O] 

Remark 2.1. The bound of the quantity IjD1vjj0,o, in the proof of the lemma may 
seem quite crude. Nevertheless the power of N in estimate (2.1 1) is optimal, in the 
sense that it cannot be reduced. Actually, for d = 1, consider the element 

N 
u = X k P N even, 

k=O 

for which one has 

N-1 N N9-2 N 
Du = ,' y( 2,' k ),, D2u= ,' yl ,' k(k2 -12) + 

1= 1 k=l+1 1 =0 k=1+2 

Then one easily checks that 

II uJlj,L 
- N2hllullO,., j = 1, 2. 0 

The formal expansion of the first derivative of a function, given in (2.10), shows 
that PN cannot commute with derivation, as for the Fourier system. Therefore, we 
need bounds for the Sobolev norms of the commutators PNDj - DjPN (j = 

1, . .. , d), which we shall establish in the following lemmas. For the sake of 
simplicity, we only deal with the case j = 1, the extension to an arbitraryj being 
obvious. 
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LEMmA 2.2. Let u E H'(Q), and set D1U = keNd Zk4k Then 

(2. 13) PND1U - D1PN 
U =f z(). N N) + z(N+I). ,0N), N even, 

I Z(N) .(N) + Z(N+ 1)0XlN), N odd, 
where 

z(N) = i Z(N k')4k', z(N+) Z(N+ I,k') 
kVGNd-I kVGNd-I 

Ik'lA < N Ik'l < N 

N N 
+&N) = ,f / Y ) ?(N) = ,f / 

11=o 1,=1 

Proof. We assume at first that u is regular enough, so that one has, by (2.10), 
00 

(2. 14) Zk 
= 

Yk, MU(mk') 
m=kl+1 

where k' = (k2, ... , kd). For instance, since by (2.9) one gets 

I 'd < 11 - PLUIIOW < CL -IaI u,", L = 1l1 - 1 

for any I e Nd and any u E H/,,(Q), one can take a so large that the series on the 
right-hand side of (2.14) is absolutely convergent, and equals the kth Chebyshev 
coefficient of a function z e L2(Q), which necessarily coincides with D,u. Then 

N oo 

PNDIu - k Ylt( k' 
k'ENd-I 1,=0 k\=l1+1 

Ik'l < N 

N-1 N 

DIPNU = k E Yll t k (k,k') , 
kVENd-I 11=0 k,=l,+/ 

Ik'l < N 

whence (2.13). Since each side of (2.13) belongs to the finite dimensional subspace 
SN and depends continuously on u in the topology of H2(Q), a standard density 
argument yields the result for arbitrary u E H I(Q). O 

LEMmA 2.3. For any real p and a with 0 < p S a - 1 there exists a constant C 
such that for j = 1, . .. , d, 

(2.15) j- DjPN)uIIPW 
< 

CN2P-u+3/211u11,, Vu E Hw(Q). 

Proof. Again we may consider only the case j = 1. We remark that z(N), z(N+ 1) 

only depend on x' = (x2,. . . , Xd) and belong to the subspace SN (in (d - 1)- 
dimensions). Conversely 4(N), 4(N) only depend on x, and are orthogonal in Lw(I). 
Hence, when N is even 

IIPNDlU - DlPNU112,w =jjz(N)jj2,w,II0N)jj2w + jz(N+ 1)112'j,I(N)jj2 

and analogously when N is odd. 
By (2.9) we get 

IIZ(N)112w = 
1 < |D,u - PN-lDlUI10., < CN2(ls)IIuII5,2, 

kE Nd -I 

lklI < N 
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and the same bound holds for II Z(N+ 1) 1 ,2,; since 

jj(g,N )jj2w - N, ||ON+j21 - N, 
we obtain (2.15) for p = 0. For p > 0 we conclude by the inverse inequality 
(2.11). EO 

Now, we are able to state the main estimate for the approximation error 
U - PNU. 

THEOREM 2.2. For any real ,u and a such that 0 < u < a, there exists a constant C 
such that 

(2.16) IIu - PNUII,,, (< CNe( V)IIuIIo, Vu E HC(Q) 

where 

(2.17) e( ,a) 
2 

,u- a- 1/2, 
u 

1, 

Proof. It is enough to prove the result for the integral u, and then use interpola- 
tion; see Bergh and Lofstrom [4]. If u = 0, (2.16) reduces to (2.10); so assume by 
inductive hypothesis that (2.16) holds for any integeru < m - 1. One has 

d 

IIU - PNUIIm,w < E |IDju - DjPNUIIm_i,W 
j=i 

d d 

< E JIDju - PNDjulIm_,i + E ||PNDju- DjPNUjIm_l,, 
i 1 j=1 

d 

?< C ' N 'IDj u II,II -1 + C,,N e(ma)u 

j=i 

applying the inductive hypothesis to each Dju E H7'(Q), and inequality (2.15). 
Whence the result, since e(m - 1, a - 1) < e(m, a). EO 

For any fixed ji and a, the exponent e(,u, o) in (2.16) is larger than the 
corresponding exponent in (1.1) for the Fourier system, whenever 1t is different 
from zero (an increase of one in the order of derivatives on the left-hand side of 
(2.16) produces an increase of two in the power of N on the right). According to 
the proof of the estimate, such a phenomenon is directly related to the inverse 
inequality (2.12), which in turn has been derived using the expression (2.10) for the 
first derivative in terms of the Chebyshev coefficients. Actually, this expansion is 
qualitatively quite different from the one in the Fourier system (recall that for basis 
functions one has d4lk/dO = ik#k, hence 4'k Ik I -~ k in the Fourier system, while 
dPk/dx = kX ,.o 4,, hence IIfk I I I kV7k in the Chebyshev system). A natural 
question arises, whether a bound better than (2.16)-with respect to N-may be 
derived. However, it is an easy matter to build up simple functions for which the 
value of e(,u, a) for particular choices of u and a, cannot be diminished: for 
instance, the function 

U(N )= N+I (N + 1)/ (N -1)ON- I (N odd) 
satisfies 

j|u(N) - PNU(N) l,w _VN IIU(N)III,w. 
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A different argument can be used in discussing the optimality of the bound (2.16); 
in order to explain it, we confine ourselves to the one-dimensional case, and for 
every I and a (nonnegative integers) we denote by e( t, a) any real number such 
that the estimate 

(2.16)- ilu- PNUII/,,W < CNe(g) IIuII,,aW Vu E HW?(I), 

holds. Then 

(2.18) IIPNDU - DPNUIIm,w < Du PNDuIIm,w +jjDu - DPNUIIm,w 
< CNe(m s)IIDuIIs,w + CNe(m+ 1,s+ 1)II uUIS+ 1w, 

On the other hand, (2.13) becomes in the present situation and for even N 

ZN + ZN+ - PNDu - DPNu 

if we set Du = z = I N=o Z^k4k We note that D1jy4N) is orthogonal to DjO(N) for any 
j > 0, since 4ON) and +(N) are, respectively, an even and an odd function; 
moreover, by repeated application of formula (2.10) one easily checks that 

|| Lj4AN)||0,w 1|| Dj,0jN)jJ0' W- N2j+ 1/2. 

Hence 

29 Dm(DPNu - PNDu)II, = ZNI || Dm45||O,W + DZN+ IW 
(2.1) N m+ (IN2 + IZN 12). 

Collecting (2.18) and (2.19), one has 

(2.20) IZ^NI < CNPIIZIIs,w Vz E HS(I) 

where p = max(e(m + 1, s + 1), e(m, s)) - 2m - 1/2. If one takes e(tt, o) = 

e( t, a) defined by (2.17), then p = -s; conversely, if e(,u, a) can be chosen strictly 
less than e( ,u, a), the exponent p in (2.20) becomes strictly less than - s. Hence the 
optimality problem for e( ,u, a) in (2.16) has been reduced to the optimality problem 
for p in (2.20). 

A series of counterexamples can be built up in order to show that p cannot be 
smaller than - s in (2.20). We consider here the cases s = 0 and s = 1: 

(a) Case s = 0. For each E > 0, define the sequence of positive integers 
{ N(k)} 0 by the relation 

I N(O) = 0, 

N(k) = the smallest integer strictly larger than N(k - 1) 

such that N(k)e > Tk2/6 

and set 

I / lk if N =N(k) for ak > 1, 

Z 0 otherwise. 

Then z = EN=O Z^N'N satisfies 

IIZII2,w = 2N 0 - 
~= and IZN() kN(k)e'IIzIIo,w 
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(b) Case s = 1. Given v = Y N 01N4ON, let z = EN E0 ZN4N be a primitive of v. 
By (2.10) it is easily checked that 

ZN 2,N{VN-1 VN+1) N > 1. 

So, for any e > 0, define the sequence of positive integers {N(k)})'.0 by the 
relation 

N( (0) = 0, 
N(k) = the smallest integer strictly larger than N(k - 1) + 2 

such that N(k)' > 2-w((1 + 7)/6)1/2 k2, 

and for any N > 0 set 

VN= l/k if N = N(k) + I for a k > 1, 
1 0 otherwise. 

Then if z is the primitive of v which vanishes at the origin, one has 

JJzJJ1I, < w{((1 + 7T)/6, /2 

so that 

IZN(k)I N(k)(k) > k * N(k)-(l+e)Izl . Uiw El 

As a consequence of this discussion, we obtain the following result. 

COROLLARY 2.1. There exists a function u E H2(I) such that the sequence 

{PNU} N 0 is unbounded in H'(I). 

Proof. Let z = N O- ZN'pN E LZ(I) be such that 

VN& ZN--* o as N - oo, 

and define u to be a primitive of z. Then, by (2.19) with m = 0, 

II PNDu - DPNuIIJW -c as N -+, 

whence the result, since II PNDuIIO,W < IIzII0Q,. OI 
2.2. The Legendre SPS. We choose I = (-1, 1) and w(x) _ 1. The orthogonal 

system associated with w is {4k = XkLk)k.o, where Lk is the Legendre polynomial 
of degree k normalized so that Lk(l) = 1, and Xk = (k + 1/2)'/2. The formal 
expansion of the first derivative of a function v = 'O 6k4k is 

oooo 
(2.21) Dv = 2 XIA XkVk p1. 

1-0 k-1+1 

Actually, this formula can be justified for every v E H'(I) (see Proposition 2.1 
below). 

We first consider the L2-norm of the approximation error u - PNu. 

THEOREM 2.3. For any real a > 0, there exists a constant C such that 

(2.22) IIu - PNuIIo < CN-0IIuJII Vu E Ha(Q). 

Proof. Assume at first that a = 2p, p > I integer. Define the differential opera- 
tors in one space variable 

Aj = Dj(l -(X0)) )D 
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and the following partition of the set X3C(N) = (k E Nd I IkK,, > N): 

%(l)(N) = {k E S}C(N) I k(l) > N), 

SC(')(N) = {k E- SK/(N) \U SK/()(N) I k(') > N) j = 21 .. I d. 

For the moment, assume u E C (Q). For k E 9')(N) one has 

Uk + (u JQ kk'(x') dX' u(x('), A dx( 
kI(kI + 1) I 

- k(k + 1) f 
~k'(x') dx'f AIU(X('), X')Pk,W(X()) dx(I) 

k1(kI + I) 

where we have used the fact that 1k satisfies the singular differential equation 
D [(I - x2)D0k] + k(k + 1)4k = 0. By iteration we obtain 

k 
k1(kI + 1) 

I 

hence, for arbitrary j, 

ke9Cl)(N) k 
kj(kj + /) keA k)(N) 

N y-4PIgAfPullo < CN-4PIIuI2p. 

Since 

d 

II U - PNUIIO = l 
j=I k E9C')( N) 

we obtain the result for u regular, then for u E Hl(#(Q) by density and continuity. 
Finally, for a included between two even integers, we conclude by interpolation 
(see Bergh and L6fstrom [4, Theorem 3.1.2]). 0 

The estimates for higher order Sobolev norms of the error can be derived by the 
same arguments we used in the Chebyshev case. Actually, the formal expansion of 
the first derivative (2.21) exhibits the same structure, hence the same asymptotic 
behavior, both for the Chebyshev and for the Legendre system. So, we simply recall 
the main results. 

LEMMA 2.4 (inverse inequality). For any real y and v such that 0 < v < I, one has 

(2.23) Ilul|, < CN2(. )IIuII| Vu C SN. O 

(This inequality has been also obtained by Babuska, Szabo and Katz [3] by a 
different technique.) 

THEOREM 2.4. For any real Mu and a such that 0 S I < a, there exists a constant C 
such that 

(2.24) IIu - PNUII < CN ce(Uo)IIUIIO VU E H?(Q), 
where e(tL, a) is given by (2.17). 0 
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Before the end of this section, we will show that expansion (2.21) is justified for 
every v E H '(I). 

PROPOSITION 2.1. Assume v = kX- o k'k E H '(I), and set Dv = St i0 &,. Then 

(2.25) zi = 2X, ' XkVk, / = 0, 1, ... 
k 1+ I 

Proof. Set DPNv = EN 
I 

Z(N) 0,. By (2.21), z() = 2A ,N IX'kk, hence (2.25) 
is equivalent to 

(DPNV, 1) -(DV, <,) as N -oo, I = 0, 1, .... 

Note that, due to the analogy of Corollary 2.1 for the Legendre system, the 
sequence (PNV}'=o may not be H'-weakly convergent to v; however, estimate 
(2.24) with y = 1/2 + c and s = 1, plus the Sobolev imbedding theorem, yield 

Vv - PNVII LOO(I) 
< CN - 1/4+eI vIli, e > 0 arbitrary. 

Since 

(DPN V, q,) -(PN v, Do,) + [ (PN V)01 X 

we can pass to the limit and obtain the result. E] 
Remark 2.2. Let us consider, for example, a Chebyshev or Legendre spectral 

(Galerkin) approximation to the Laplace or to the heat equation; see [10]. Standard 
energy estimates give an upper bound of the approximation error in the norm of 
H1(2) in terms of u - PNUII I Using directly the estimate (2.16) or (2.24) we get 
the suboptimal order of convergence O(N3/2-0) assuming u E Ha(Q). So the 
results of this section indicate that projection operators for higher order norms 
must be involved in the analysis of nonperiodic problems (in opposition to the case 
of periodic problems, where the projector PN plays a universal role). Actually, using 
the Hjl-projection operator 1N we obtain O(N' 1). A similar result also holds for 
the Chebyshev (Legendre) approximation to the steady state Burgers equation, as 
shown in [22, Section 2]. 

The proof of the estimate IIu - HNUII11,,w < CN-01jull,,, which holds for u E 
Ha(Q), 0 < y < a > 1, relies on the properties (2.20) and (2.32) for y = 0; cf. [22, 
Theorem 1.6]. 

The property (2.24) is also used to analyze a Legendre spectral approximation to 
the one-dimensional advection equation; see [11, Section 3.2]. Furthermore, the 
estimates (2.16) and (2.24) are used to get the results (3.7) and (3.15) which play an 
important role in the applications (see Remark 3.2). 

3. Spectral Interpolation Systems. The motivation for the results of this section 
stands in the analysis of pseudo-spectral (collocation) approximations of P.D.E.'s 
submitted to nonperiodic boundary conditions in a ipercube. The strategy to be 
followed is to collocate the equation at the interior knots of some Gauss integration 
formulas having also knots where boundary conditions are imposed. So, for elliptic 
and parabolic problems one uses totally closed (Gauss-Lobatto) quadrature. For 
first order hyperbolics, open or semiopen (Gauss or Gauss-Radau) quadrature is 
also needed, according to the direction of the flux. Interpolation operators at the 
quadrature nodes are considered in the analysis of such schemes. 
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In the following, an integration formula on I 
N 

(3.1) f k(x)w(x) dx - I O(x.)wm, XQ < XI < < XN 
m=O 

will be denoted by fW N = ((Xm, W) I 0 < m < N). We fix a finite set CW N of such 
formulas, and we assume that eachvfwN & g;W N satisfies 

(3.2) (i) xm E I, wm > O, for O < m < N; 
(ii) the formula is exact if ? is a polynomial of degree < 2N - 1. 

To everyfvwN' we associate the symmetric bilinear continuous form on C?(I) 
N 

(u, V)w,N = E U(XM)v(xM)wM; 
m =O 

due to (3.2), it defines an inner product on SN(I), with respect to which the system 
(k} k =}o satisfies 

0, if 1#k, l,k SN, 

(3.3) (+l Ok)wN 1 if = k < N, 

eN, if l= k = N, 

with eN > 0 depending onSW,N 
In this paper we take wWN = ( w I) N' )}, where w N, w w are, 

respectively, the (N + I)-point Gauss (eN = 1, - 1 < xO < XN < 1), Gauss-Radau 
(eN = 1, -1 = XO < XN < 1), Gauss-Lobatto (eN # 1, -1 < xO < XN = 1) integra- 
tion formulas over I with respect to the weight w. For d > 1, a d-tuple f.,N = 

(f$N) d= I 6 (6w 
d)d of one-dimensional integration formulas defines the integration 

formula on Q 

f ?>(x)w(x) dx E ?k(xm)wm, 
Q ~ ~~~~~~ mE=Nd 

ImlI < N 

where xm = (xj)$=)1, d m - 1ld W() (if (jx) = w((X) w)) | 0 < m < N)). We in- 
troduce the bilinear form on C?(Q) 

' 

(3.4) (u, V)w,N = E U(Xm)V(Xm)Wm, 
meNd 

ImIo <N 

and we note that 
d 

(3.5) (4kk' 0I)W,N r I (Pkl 1j)iN' 
1 = 1 

where the superscript j refers to the formula fS(N. In particular, (3.4) is an inner 
product on SN; hence we can define the continuous linear operator PC: C?(Q) -* SN 
by the relation 

(PCV, p)wN = (V, 0),w,N V4 E SN 
Since for every xm there exists a unique k E SN satisfying k(xo) = 6mi (precisely 

H = 1J' c(p('), with 400)(x4) = ,), we see that PCv is the function in SN which 
interpolates v at the nodes of the integration formulaw, N. 
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Definition 3.1. The triplet (Q, f,,,wN PC) is called a Spectral Interpolation System 

(SIS). 
3.1. The Chebyshev SIS. The quadrature nodes (Chebyshev points) are of the 

form xm =cos Om, 0 ? m < N. For the Gauss formula, Om are defined in (1.4), (1.8) 
and Wm = 7/(N + 1) for any m. For the Gauss-Radau formula, Om are defined in 
(1.4), (1.11) and w0 = 7T/(2N + 1), Wm = 27T/(2N + 1) for m > 1. For the Gauss- 
Lobatto formula, Om are defined in (1.4), (1.14), w0 = WN = T/2N, wm = </N for 
1 < m < N - 1, and eN = 2. 

Moreover we can associate to the interpolation operator Pc over Q a Fourier 
interpolation operator I-IC over Q. Precisely, we define the partition 
(J(G), J(GR), J(GL)) of 6D by requiring thatj E J(G) (resp. J(GR), resp. J(GL)) 
whenever f$wN) is an integration formula of Gauss (resp. Gauss-Radau, resp. 
Gauss-Lobatto) type; then we define Ic by (1.22). 

LEMMA 3.1. For any v E C?0(Q) 

(3.6) PC= v I . 

Proof. By the relation cos kO = (exp(ikO) + exp(- ikO))/2 and the fact that 

PCv E SN one easily checks that Pcv E QN(i). Moreover by definition Pcv agrees 
with v6 at the nodes Om with 0 < mj < N for any j E 6D. Since the interpolation 
nodes of type (G), (GR) or (GL) are symmetrically placed with respect to the 
origin, and Pcv, v6 are both even functions in each coordinate, they agree at any 
node Om, m E g(N), whence the result by the uniqueness of the interpolation 
operator. O 

THEOREM 3.1. For any a > d/2 and any real t, such that 0 < ,u < a, there exists a 
constant C such that 

(3.7) jju - PcuIK, < CN2,-oIIuII"o V u E H?(Q). 

Proof. One has 

11 u- PcuCI^ = 2-|| a-I iL2(2) 

so (3.7) holds with ,t = 0 by (1.23) and (2.7). For ,t > 0, we use the inverse 

inequality (2.1 1) 

IIu - PcuIIt,,,, < IIu - PNUII,,,,I + CN 21|IIPNU - CU|IIOs 
and we conclude by (2.16) and the previous case. E1 

3.2. The Legendre SIS. 

LEMMA 3.2. Let eN be defined by (3.3) for the Gauss-Lobatto integration formula 

f(), Then 

(3.8) eN = 2 + 1/N. 

Proof. Sincefw,Nf is exact for polynomials of degree ? 2N-1, we have 

(ON, ON)N - (ON, ON) = a[(xN, xN)N (X N, X N)], 

where 

1 (2N)! 
N N N!2N N! 
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is the leading coefficient of the polynomial ON. By the formula for the Gauss- 
Lobatto integration error (cf., e.g., Davis and Rabinowitz [12, p. 80]) we get 

(xN, xN)N - (xN, xN) = (N 
+ I)N322N+l[(N 

- 1)! ] d2N 

(2N + 1)[(2N)!]3 dX2N ) 

whence the result can be easily deduced. D 
As a consequence we note that, due to (3.5), we have 

(3.9) 
C 

o P 2)N < Cjj+kIo Vk 

with C independent of N. 
Before stating the error estimate for the interpolation operator P, we derive the 

following auxiliary result. 

LEMMA 3.3. Assume d = 1. For any 0 < s < 1 there exists a projection operator 

Is,N: Hs(I) > SN 

such that the following estimate holds for any u E H?(I): 

(3.10) |lu - iL5s,Null, < CN I'|uIl, 0 < i < s < a. 

Is,N is the orthogonal projection operator with respect to a suitable inner product, 
whose associate norm is equivalent to the standard Hs-norm. 

Proof. By an affine mapping we can transform the interval I into (0, so), without 
affecting the result; so assume we work on (0, g). For any v E Hs(O, so), denote by 
Rv the function obtained by even reflection with respect to the origin. Since 
s < 3/2, Rv E Hs(- , 7). This space will be equipped with the inner product 

+ o 

((U, V))HS(_TT) HEI ( 1 + k 2)slk k 
k--oo 

if U = 
00 

o zk Pk, V = k+X- l3k4-'k. So we define the following inner product in 
Hs(O, ST) 

((U, V))H-(O,) 2 ((Ru, Rv))H)(-,,,) 

and Ils,N will be the orthogonal projection operator upon SN with respect to this 
inner product. It is easily checked that u __ ((u, U))1{102) is a norm equivalent to 

11 j* ls In order to establish (3.10), consider first the case yt = s. Since IIs,N is an 
orthogonal projection, we have 

(3.11) llu - "SsNulls < Cllulls Vu E Hs(O, 7T). 

Moreover, for a > 1 denote by HlN: H 1(0, f) SN the orthogonal projection in 
the H '-norm; then 

(3.12) |lu - Hls,NUll < Cllu - HlNuIl < CNS||IuIIa. Vu E H0(O, 7) 

(cf. Maday and Quarteroni [22]). When s < a < 1, we use interpolation taking into 
account (3.11) and (3.12). 

We consider now the case yt = 0, arguing by a standard duality argument. 
Denote by 
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the Riesz isomorphism (i.e., J, satisfies 

(3.13) ((JI V))HS(O, I) =(H-(O,7))'<Kf V>H-(O,,,) Vv E Hs(O, 7T)) 
and assume for the moment that the following regularity result holds: 

(3.14) JS maps L2(0, T) into H2(0, T) with continuity. 

Then 

IlU - JiIs,NUIIo = sup (u - IsNU f) 
fe L2(0,1T) 

11f11o= 1 
- sup ((u - Hls,NU, Jsf))H-i(o,) 

f e L2(0,1T) 

11f11o= 1 

- sup ((u - ,IsNU, J5J - 
IsNJsf))NH(0,17) 

f e L2(0,1T) 

IIfIIo= I 

< CNs`II uJII N-s sup IIJsfl2s < CN -0I1u11 
f e L2(,O,f) 

IlIfIo= I 

due to (3.13), to (3.10) with yt = s and to (3.14). Finally we obtain (3.10) with 
0 < [ < s by interpolation. So the proof is complete if we check (3.14). To this end, 
set Rjsf = Ek Wk#k, Rv = Xk Vk4%k, Rf = k fk4lk. Equation (3.13) is equivalent to 

((RJsf, Rv))HW(-,, 
I ) = (RJ, Rv)L2( , Vv E Hz(O, r), 

that is 

(1 + k) Wk kk = E k VV E H& (O, T). 
k k 

Note that the Fourier coefficients involved in this equation are all real and even, 
i.e., Wk =Wk Vk = V-k k = f-k for any k & Z. Taking v(x) = cos kx, we get 

(1 + k ) k = fk, k E Z; 

whence RJSJ E- H 2s(_ -T, T) with 

((RJJ, RJsf))H2(_T) = (Rf, Rf)L2(-,IT). 

This clearly implies (3.14), and the proof is finished. El 

THEOREM 3.2. For any real a > d/2 and any real ,i such that 0 < ti < a, there 

exists a constant C such that 

(3.15) jlu - PCullL < CN 21I-+d-1/2 Ilull Vu E H(2(Q). 

Proof. We first consider the case i = 0. Denote by 1H: H'(Q) ' SN a projection 
operator to be specified in the following. We write 

u - Pcu = (u - HIu) - PC(u - LU), 

and we estimate the second term on the right. We have 

IIPC(u - Iu)II S (P2(u-flu), PC(U-IFu))N by (3.9) 
= (u - IIu, u - IlU)N 

< 2 ||u - uIIL (Q). (00O OO)N < C||u - ruIll (Q). 
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Let us denote by Bpq(Q) the Besov space of order s and indices p, q (see, e.g., Bergh 
and Lofstrom [4, Definition 6.22]). Since B2(2 c L?(Q) with continuous injection 
(Bergh and Lofstrom [4, Chapter 6, Exercise 9]) and for any E > 0, Bd/2 = 

(H d/2+e((), Hd/12e( ))/2,1 (where ( )p,q denotes here real interpolation of indices 
p and q; see Bergh and Lofstrom [4, Theorem 6.2.4]) we have 

I|u - HlUIIL??(Q) < ciIu - HUJJB2d(2(S) 

< C21|U - IFIUIHd/2+e(S)IIU - I IU|IHd/2-e(S), 

where C2 can be chosen independent of E. Now we choose 1I = IlI/2+e N defined in 
Lemma 3.3 when d = 1, and H = PN when d > 1. Using (3.10) or (2.32) and 
letting E tend to zero, we obtain the result. For ti > 0 we proceed as in the proof of 
Theorem 3.1. EO 

Remark 3.1. It is an open problem to check whether the last result is optimal. El 
Remark 3.2. Results (3.7) and (3.15) are currently used whenever Chebyshev and 

Legendre pseudo-spectral (collocation) methods are analyzed. The reader inter- 
ested in applications can refer to [11] and [23] (concerned with the one-dimensional 
advection equation, [20] (heat equation), [21] (steady-state Burgers equation), where 
error estimates for the collocation approximation are derived by variational tech- 
niques. In particular one has to evaluate terms as u - PCu and Ej(f, 0) = (f, +)XN 
- (f, k),, for some continuous f and 0 E SN. The last quantity defines the error 
arising from the use of an integration formula to approximate the L2-inner product 
(, *,. It can be proved [10, Lemma 3.2] that 

IEJ(f, k)1 < C114111o(f- PcIlo,w + If - PN- I]ow)' 
where C does not depend on N. Then, using (2.16), (2.24), (3.7) and (3.15), it follows 
that the above error behaves as N -0 assuming f E H'. Ol 
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